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Synchronization-based noise reduction method for communication with chaotic systems

Naresh Sharma and Edward Ott
Institute for Plasma Research, Institute for Systems Research and Department of Electrical Engineering,
University of Maryland, College Park, Maryland 20742
(Received 2 July 1998

We describe a noise reduction algorithm for communication using a controlled chaotic system. Our algo-
rithm uses the phenomenon of chaos synchronization, and utilizes the knowledge of the transmitter dynamics
in extracting the signal. The correct noise estimate at the receiver yields synchronization and has a minimum
norm. A numerical experiment illustrating the method is presented, and shows that successful recovery of the
transmitted signal is possible for signal to noise ratios of order uf#¥063-651X98)07911-2

PACS numbefs): 05.45:+b, 43.72+q

Noise limits the information content that can be retrieved From past work on chaos synchronizat{dmi], we know
from a signal. In particular, this is an important considerationthat it is possible to design a synchronizing receiver. Thus, if
in the context of communication with chaotic signfls2].  the received signal is used to drive the synchronizing re-
There have been many methods proposed in which theeiver, we know that, under no noise conditions, the input
dynamics, reconstructed from the observations or knewn and the output of the synchronizing receiver will be the
priori, can be used to identify and correct errors in noisysame. This will not be true, however, when noise is present.
chaotic datd3]. A noise reduction method attempts to sepa-The synchronization error typically increases monotonically

rate the received signal into noise and signal unambiguouslyyith input noise[7]. Consider now that an estimatét) of

so that the signal becomes more consistent with the dynamjne nojsen(t) is continuously generated at the receiver, and
cal models. We describe a simple method based on chags; the final signal driving the synchronizing receiver be of
synchronization, restricting ourselves to the case of add't'vﬁwe formx(t)+n(t)—ﬁ(t) (see Fig. 1 Letﬁ(t) be chosen

noise. The noise reduction method we present would be q SN .
: o Py some means such that synchronization is observed, i.e.,
particular use for the communication scheme proposed in

Ref.[2]. In that communication scheme, the transmitter be- .
haves chaotically, and a small control is used to cause the y(t)=x(t)+n(t)—n(t), (1)
transmitter dynamics to follow one of the dynamically al-

lowed symbol sequences of the symbolic dynamics of the . .
free-runzing(i.e. ?mcontrolleb;l chao){ic device)./ The trans- Wherey(t) denotes the output of the synchronizing receiver.

mitted information is thus encoded in the symbolic dynamicsmce only those signals which satisfy the transmitter state

sequence available from the transmitted signal. Since thgquatlons pass undistorted through the synchronizing re-

control is small, only dynamically allowed sequences arec€Iver, we conclude that, if Eq1) is satisfied, thery(t) is

used, and the transmitted signal is essentially realizable as &h rJectory of the chaotic transmitter dynamical system.
orbit of the free-running systentln effect, the role of the There will be, in general, a large number of signa(s) for
small control is to choose which of the infinite number pos-which the constraint(l) is satisfied. Ifn(t)=n(t), then
sible free-running transmitter orbits is followgdlhus, in  y(t)=x(t), and bothn(t) and n(t) have the same norm.

Wr?at TOHQWS’IWG (éan assukme th]f"t vr:e W'S%h to transmhlt SOM& Hndition (1) holds forﬁ(t) such thaty=x+n—? is any
chaotic signal, and we make no further reference to the smayqjpe orbit of the chaotic system, even one far fodt).

control. . . If y(t) andx(t) are different orbits of the same chaotic sys-
Let x(t) be an output of the transmitter chaotic system.ioq, - than ‘due to exponential divergence, we expect that they

Let there b.e an addltlve nqsm(t), added in th_e channel will typically be very different. An exception is whey(t)

t_hrough_wh|chx(t) is tran_sm|tt_ed. Hence the noisy time se- =x(t— 1) and ris small, in which casex(t) andy(t) may

ries available at the receiver xt) +n(t). We assume here omqin lose to each other for all time. We show that, in both

that x(t) is scalar[the method we describe below can be —

extended to vectox(t)]. The problem which we address is thesgz ca_sesl(t) has a Iarger norm than(t). [Another ex-
o . — . ception is where the orbits fax(t) and y(t) are on each

the following: can we generate an estimate), of the noise  qihers stable manifold, in which cabe(t) — y(t)|—0 with

n(t), at the receiver, so as to extraqtt)? As we describe . reagingt. Since we are interested in long time behavior

below, the phenom_enon of chaos_ synchronlza{ﬂq_n] €aN  this case is equivalent, for our purposesxtandy being the
be effectively exploited for generating such an estimate. Syn-
chronization has been used before for the equalization of
linear distortion in the channgb] and for parameter recov- = X0 () X0+ -5
ery [6]. We extend this approach further for noise reduction. ' <

n(t) n(t)

RX. — ¥®

*Also at the Department of Physics, University of Maryland, Col-  FIG. 1. The estimate of the noise is subtracted from the received
lege Park, MD 20742. signal.
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same] We claim the following: Given constrairl), then  which establishes the claim that) is minimum only when
n(t)=n(t) only if ||n(t)|| is minimum. The norm ofi(t) is it is the correct estimate. Hence our decoding algorithm
given by should find the trajectory which is the nearest to the received
1 noisy trajectoryx(t) +n(t). Note that the above argument is
— R _ 2 not dependent on the assumption of a specific form of noise
Inco)ll T ft_ (x(1)+n(t) —y(t)"dt n(t) (Gaussian, uniform etc[8].
Since the number ai(t)’s satisfying Eq.(1) will be very

1 (T
202+—f (x(t)—y(t))%dt, (2) large, an exhaustive search to find thé) of minimum
T Ji=o norm may not be feasible. We now suggest a sinfplan-

whereo? is the variance of the zero mean noise, assumed t§Xhaustive method to estimate tha(t) with a minimum

be uncorrelated with(t) andy(t). The pathological case of Norm which we find works well in numerical examples. Let
n(t)=y(t)—x(t), wherey(t) is some other trajectory of the the.n0|sy.t|n'1e series of Ie;ngikl avallable. at the receiver be
transmitter chaotic system, is ruled out because of the adX(i)+n(i)}i=1, wherex(i) may be a discrete time signal
sumption thain(t) is uncorrelated with transmitter trajecto- ©F @n appropriately sampled version of a continuous time
ries. In practice, in a physical communication channel like asignal. The estimate of the noiseis generated by minimiz-
telephone line, for example, the added thermal noise has n6g the function

correlation with the trajectories of the transmitter system.

The integral term in Eq.2) is always positive ifx(t) N o o

#y(t). Forx(t)#y(t), the two chaotic trajectorieg(t) and T(n)=2 (y(i)+n(i)—x(i)—n(i)2+rn2(i),

y(t) will be typically uncorrelated, and hence the integral i=1

term becomes R,(0)— u2) [=2 Var(x)], whereR (1)

denotes(x(t)x(t— 7)), the autocorrelation function of(t) where \ is a regularization parameter added to obtain the
and u, denotes(x(t)), the mean ofx(t). (The angular minimum norm solutionN will typically be a large number.
brackets denote the average over tinidowever, it is pos- Instead of minimizing over a large number of variables and
sible thaty(t)=x(t—7), for some nonzera, since a time hence increasing the complexity of the minimization algo-
shifted version ok(t) will also pass through the synchroniz- rithm, we do it over a smaller number of variablgs and

ing receiver undistorted. The integral term, in this case, bethen use a sliding window to obtain the complete estimate of
comes equal to R,,(0)—R(7)). In each case, the integral theN variables. The function we use for minimizing vari-
term is a strictly positive quantity for a wrong estimate, ables is

-1
Ti(n(J).n(j+1),...n(j+M—-1))= > e Iy(i)+n(i)—x(i)—n(i))?

i=j—K
jtM-1 - B

+ 2 Lo +ni)=x(D)=n()* ()]
j+tM+K-1

+ EM e*07D(y(i)+n(i)—x(i)—n(i))2 @)

i=j+

(Other choices are also possiblé/e use an iterative proce- nizing receiver at time instarit=1, denoted byw(1), is un-
dure consisting of successive minimizing “passes,” wherenown  and is used to solve for the output of the
in each pass we minimizg;, incrementingj from 1 10N gynchronizing receiver at later instants. We estinva®) in
—M+1, and we use the estimate oft) from the previous each pass by minimizing the function

pass as the initial condition for minimization on the current

pass. In the expression df; [Eq. (3)], the first and last N

summation terms are added since the information about a G(W(l))IE (y(i)=x(i)—n(i))>.

sample is also contained in the preceding and succeeding =1

terms, and the exponential factor indicates the decay of thi

information. K limits the sum when the exponential term %ur typical strategy involves choosingas initially large,

becomes small and variesl/a. We use the previously gen- and then gradl_Ja_IIy_ de(_:reasing it after each pass by a scaling
. —. —. — factor. For minimization, we use the downhill simplex
erated estimatesn(j—K),....n(j—1) and n(j+M)..... . method requiring only function computations. This method
n(j+M+K~-1) for calculation and minimize over the vari- is discussed in standard references such as[REfand is
ablesn(j),...,n(j +M—1). The state vector of the synchro- better for our purposes than an algorithm like the steepest
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FIG. 3. The output SNR as a function of the input SNR.
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Timersetes We minimized the functioiT; as defined by Eq3) when the
FIG. 2. The estimated noigsolid line) as the number of passes signal to noise ratigSNR) of the received signal was 10 dB
over the time series are increaséd) 1, (b) 5, and(c) 15. The  [11]. The parameters, K, M, andN were chosen as 0.25, 5,
dashed line represents the additive Gaussian noiseowtB.69. 6, and 80, respectively. The parametewas decreased by a
) ) ] ] . factor of 2 after each pass with an initial value of 5.0. Figure
descent algorithm which requires the computation of derivay ghows the actual and the estimated noise at various stages

tives and.may bg more time consuming. . . of the minimization. As shown in Fig. 2, the estimate of the
As an illustration, the method was applied to the continu-

ous time Lorenz systerfil0]. The Lorenz equationévari- noisen(t) approaches th(.a.actual noiB@) as the number of
ablesX, Y, Z) and the equations for the synchronizing re- passes are increased. Initially the estimate resembles a scaled

ceiver[variablesX, (1), Y,(t), Z,(t)] are as followsCuomo down version of the actual noise; Rslecreases, the estimate

; : becomes better. The final value of the SNR after 15 passes

and Oppenheinp]): was 20.7 dB. Figure 3 plots the input versus the output SNR.
X=a(Y—X), Y=rX—-Y-XZ 7=XY-bZ Typical gain in the SNR py t.his. filtering operation is_ arqund
10 dB. The performance is limited by the interpolation inac-

X =o(Y,—X.), Y.=1X—Y,—XZ, Z.=XY,—bZ, curacy, and a higher order interpolation would be expected

to give a larger gain in the final SNR. The lendthof the
where (,r,b)=(16.0,45.0,4.0). The time series in this casetime_ s_gries_ shopld not be too large. Since the state vector at
consists of the sampled received signal. The sampling tim#€ initial time is estimated at each pass, the interpolation
was 0.01(arbitrary unit3. The sampled signal was then in- €rror W|I_I be Ia_rger for largéN, resulting in a worse estimate.
terpolated, and used for integration to calculate the output of? Practice, this can always be taken care of by breaking a
the synchronizing receiver. Polynomial interpolation of orderlong time series into smaller lengths.

two (quadrati¢ was used, where the poi(n+a) at a In conclusion, we have introduced and illustrated a simple
distancea e [0,1] from X(n) is determined as method for reducing noise in chaotic signals. Our method is
based on the minimum norm property satisfied by the con-
X(n+a)=0.5a¢(a+1)X(n+1) strained estimate of the noise.
+(1—a?)X(n)—0.5¢(1+ a)X(n—1). The work was supported by the Office of Naval Research.
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