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Synchronization-based noise reduction method for communication with chaotic systems

Naresh Sharma and Edward Ott*
Institute for Plasma Research, Institute for Systems Research and Department of Electrical Engineering,

University of Maryland, College Park, Maryland 20742
~Received 2 July 1998!

We describe a noise reduction algorithm for communication using a controlled chaotic system. Our algo-
rithm uses the phenomenon of chaos synchronization, and utilizes the knowledge of the transmitter dynamics
in extracting the signal. The correct noise estimate at the receiver yields synchronization and has a minimum
norm. A numerical experiment illustrating the method is presented, and shows that successful recovery of the
transmitted signal is possible for signal to noise ratios of order unity.@S1063-651X~98!07911-2#

PACS number~s!: 05.45.1b, 43.72.1q
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Noise limits the information content that can be retriev
from a signal. In particular, this is an important considerat
in the context of communication with chaotic signals@1,2#.
There have been many methods proposed in which
dynamics, reconstructed from the observations or knowa
priori , can be used to identify and correct errors in no
chaotic data@3#. A noise reduction method attempts to sep
rate the received signal into noise and signal unambiguou
so that the signal becomes more consistent with the dyna
cal models. We describe a simple method based on ch
synchronization, restricting ourselves to the case of addi
noise. The noise reduction method we present would be
particular use for the communication scheme proposed
Ref. @2#. In that communication scheme, the transmitter
haves chaotically, and a small control is used to cause
transmitter dynamics to follow one of the dynamically a
lowed symbol sequences of the symbolic dynamics of
free-running~i.e., uncontrolled! chaotic device. The trans
mitted information is thus encoded in the symbolic dynam
sequence available from the transmitted signal. Since
control is small, only dynamically allowed sequences
used, and the transmitted signal is essentially realizable a
orbit of the free-running system.~In effect, the role of the
small control is to choose which of the infinite number po
sible free-running transmitter orbits is followed.! Thus, in
what follows, we can assume that we wish to transmit so
chaotic signal, and we make no further reference to the sm
control.

Let x(t) be an output of the transmitter chaotic syste
Let there be an additive noisen(t), added in the channe
through whichx(t) is transmitted. Hence the noisy time s
ries available at the receiver isx(t)1n(t). We assume here
that x(t) is scalar@the method we describe below can
extended to vectorx(t)#. The problem which we address
the following: can we generate an estimaten̄(t), of the noise
n(t), at the receiver, so as to extractx(t)? As we describe
below, the phenomenon of chaos synchronization@1,4# can
be effectively exploited for generating such an estimate. S
chronization has been used before for the equalization
linear distortion in the channel@5# and for parameter recov
ery @6#. We extend this approach further for noise reducti
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From past work on chaos synchronization@1,4#, we know
that it is possible to design a synchronizing receiver. Thus
the received signal is used to drive the synchronizing
ceiver, we know that, under no noise conditions, the in
and the output of the synchronizing receiver will be t
same. This will not be true, however, when noise is pres
The synchronization error typically increases monotonica
with input noise@7#. Consider now that an estimaten̄(t) of
the noisen(t) is continuously generated at the receiver, a
let the final signal driving the synchronizing receiver be
the form x(t)1n(t)2n̄(t) ~see Fig. 1!. Let n̄(t) be chosen
by some means such that synchronization is observed, i

y~ t !5x~ t !1n~ t !2n̄~ t !, ~1!

wherey(t) denotes the output of the synchronizing receiv
Since only those signals which satisfy the transmitter s
equations pass undistorted through the synchronizing
ceiver, we conclude that, if Eq.~1! is satisfied, theny(t) is
a trajectory of the chaotic transmitter dynamical syste
There will be, in general, a large number of signalsn̄(t) for
which the constraint~1! is satisfied. If n̄(t)5n(t), then
y(t)5x(t), and bothn(t) and n̄(t) have the same norm
Condition ~1! holds for n̄(t) such thaty5x1n2n̄ is any
possible orbit of the chaotic system, even one far fromx(t).
If y(t) andx(t) are different orbits of the same chaotic sy
tem, then, due to exponential divergence, we expect that
will typically be very different. An exception is wheny(t)
5x(t2t) andt is small, in which case,x(t) andy(t) may
remain close to each other for all time. We show that, in b
these cases,n̄(t) has a larger norm thann(t). @Another ex-
ception is where the orbits forx(t) and y(t) are on each
others stable manifold, in which caseux(t)2y(t)u→0 with
increasingt. Since we are interested in long time behav
this case is equivalent, for our purposes, tox andy being the

FIG. 1. The estimate of the noise is subtracted from the rece
signal.
8005 © 1998 The American Physical Society



d
f
e
a
-

e
s
m

ra

-
be
l
e

hm
ved
is
ise

et
e
l
me

the

nd
o-

of

8006 PRE 58BRIEF REPORTS
same.# We claim the following: Given constraint~1!, then
n̄(t)5n(t) only if zun̄(t)uz is minimum. The norm ofn̄(t) is
given by

zun̄~ t !uz25
1

T E
t50

T

„x~ t !1n~ t !2y~ t !…2dt

5s21
1

T E
t50

T

„x~ t !2y~ t !…2dt, ~2!

wheres2 is the variance of the zero mean noise, assume
be uncorrelated withx(t) andy(t). The pathological case o
n(t)5y(t)2x(t), wherey(t) is some other trajectory of th
transmitter chaotic system, is ruled out because of the
sumption thatn(t) is uncorrelated with transmitter trajecto
ries. In practice, in a physical communication channel lik
telephone line, for example, the added thermal noise ha
correlation with the trajectories of the transmitter syste
The integral term in Eq.~2! is always positive if x(t)
Þy(t). For x(t)Þy(t), the two chaotic trajectoriesx(t) and
y(t) will be typically uncorrelated, and hence the integ
term becomes 2„Rxx(0)2mx

2
… @52 Var(x)#, whereRxx(t)

denoteŝ x(t)x(t2t)&, the autocorrelation function ofx(t)
and mx denotes^x(t)&, the mean ofx(t). ~The angular
brackets denote the average over time.! However, it is pos-
sible thaty(t)5x(t2t), for some nonzerot, since a time
shifted version ofx(t) will also pass through the synchroniz
ing receiver undistorted. The integral term, in this case,
comes equal to 2„Rxx(0)2Rxx(t)…. In each case, the integra
term is a strictly positive quantity for a wrong estimat
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which establishes the claim thatn̄(t) is minimum only when
it is the correct estimate. Hence our decoding algorit
should find the trajectory which is the nearest to the recei
noisy trajectoryx(t)1n(t). Note that the above argument
not dependent on the assumption of a specific form of no
n(t) ~Gaussian, uniform etc.! @8#.

Since the number ofn̄(t)’s satisfying Eq.~1! will be very
large, an exhaustive search to find then̄(t) of minimum
norm may not be feasible. We now suggest a simple~non-
exhaustive! method to estimate then̄(t) with a minimum
norm which we find works well in numerical examples. L
the noisy time series of lengthN available at the receiver b
$x( i )1n( i )% i 51

N , wherex( i ) may be a discrete time signa
or an appropriately sampled version of a continuous ti
signal. The estimate of the noisen̄ is generated by minimiz-
ing the function

T~ n̄!5(
i 51

N

„y~ i !1n̄~ i !2x~ i !2n~ i !…21ln̄ 2~ i !,

where l is a regularization parameter added to obtain
minimum norm solution.N will typically be a large number.
Instead of minimizing over a large number of variables a
hence increasing the complexity of the minimization alg
rithm, we do it over a smaller number of variablesM , and
then use a sliding window to obtain the complete estimate
theN variables. The function we use for minimizingM vari-
ables is
Tj„n̄~ j !,n̄~ j 11!,...,n̄~ j 1M21!)5 (
i 5 j 2K

j 21

ea~ i 2 j !
„y~ i !1n̄~ i !2x~ i !2n~ i !…2

1 (
i 5 j

j 1M21

@„y~ i !1n̄~ i !2x~ i !2n~ i !…21ln̄2~ i !#

1 (
i 5 j 1M

j 1M1K21

ea~ j 2 i !
„y~ i !1n̄~ i !2x~ i !2n~ i !…2. ~3!
e

ling
x
od

est
~Other choices are also possible.! We use an iterative proce
dure consisting of successive minimizing ‘‘passes,’’ whe
in each pass we minimizeTj , incrementingj from 1 to N
2M11, and we use the estimate ofn̄(t) from the previous
pass as the initial condition for minimization on the curre
pass. In the expression ofTj @Eq. ~3!#, the first and last
summation terms are added since the information abo
sample is also contained in the preceding and succee
terms, and the exponential factor indicates the decay of
information. K limits the sum when the exponential ter
becomes small and varies;1/a. We use the previously gen
erated estimatesn̄( j 2K),...,n̄( j 21) and n̄( j 1M ),...,
n̄( j 1M1K21) for calculation and minimize over the var
ablesn̄( j ),...,n̄( j 1M21). The state vector of the synchro
e

t

a
ng
is

nizing receiver at time instanti 51, denoted byw~1!, is un-
known, and is used to solve for the output of th
synchronizing receiver at later instants. We estimatew~1! in
each pass by minimizing the function

G„w~1!…5(
i 51

N

„y~ i !2x~ i !2n~ i !…2.

Our typical strategy involves choosingl as initially large,
and then gradually decreasing it after each pass by a sca
factor. For minimization, we use the downhill simple
method requiring only function computations. This meth
is discussed in standard references such as Ref.@9#, and is
better for our purposes than an algorithm like the steep
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descent algorithm which requires the computation of deri
tives and may be more time consuming.

As an illustration, the method was applied to the contin
ous time Lorenz system@10#. The Lorenz equations~vari-
ablesX, Y, Z! and the equations for the synchronizing r
ceiver@variablesXr(t), Yr(t), Zr(t)# are as follows~Cuomo
and Oppenheim@1#!:

Ẋ5s~Y2X!, Ẏ5rX2Y2XZ, Ż5XY2bZ,

Ẋr5s~Yr2Xr !, Ẏr5rX2Yr2XZr , Żr5XYr2bZr ,

where (s,r ,b)5(16.0,45.0,4.0). The time series in this ca
consists of the sampled received signal. The sampling t
was 0.01~arbitrary units!. The sampled signal was then in
terpolated, and used for integration to calculate the outpu
the synchronizing receiver. Polynomial interpolation of ord
two ~quadratic! was used, where the pointX(n1a) at a
distanceaP@0,1# from X(n) is determined as

X~n1a!50.5a~a11!X~n11!

1~12a2!X~n!20.5a~11a!X~n21!.

FIG. 2. The estimated noise~solid line! as the number of passe
over the time series are increased:~a! 1, ~b! 5, and ~c! 15. The
dashed line represents the additive Gaussian noise withs53.69.
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We minimized the functionTj as defined by Eq.~3! when the
signal to noise ratio~SNR! of the received signal was 10 dB
@11#. The parametersa, K, M , andN were chosen as 0.25, 5
6, and 80, respectively. The parameterl was decreased by
factor of 2 after each pass with an initial value of 5.0. Figu
2 shows the actual and the estimated noise at various st
of the minimization. As shown in Fig. 2, the estimate of t
noisen̄(t) approaches the actual noisen(t) as the number of
passes are increased. Initially the estimate resembles a s
down version of the actual noise; asl decreases, the estima
becomes better. The final value of the SNR after 15 pas
was 20.7 dB. Figure 3 plots the input versus the output SN
Typical gain in the SNR by this filtering operation is aroun
10 dB. The performance is limited by the interpolation ina
curacy, and a higher order interpolation would be expec
to give a larger gain in the final SNR. The lengthN of the
time series should not be too large. Since the state vecto
the initial time is estimated at each pass, the interpolat
error will be larger for largeN, resulting in a worse estimate
In practice, this can always be taken care of by breakin
long time series into smaller lengths.

In conclusion, we have introduced and illustrated a sim
method for reducing noise in chaotic signals. Our method
based on the minimum norm property satisfied by the c
strained estimate of the noise.

The work was supported by the Office of Naval Resear

FIG. 3. The output SNR as a function of the input SNR.
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